
Intel in
Communications

A Solution to Invoke
Synchronous Intel® Dialogic®

Functions Asynchronously for
the Windows* Operating System

Application Note

Contents

Executive Summary 1

Introduction 1

The Issue 1

The Solution 2

Thread Pools 2

Why Use Thread Pools 3

Windows* Thread Pool Services 3

Windows Thread Pool Services Peculiarities 3

Handling Synchronous Functions 3

Notification to Application 5

Platform Independence 7

Application Example 7

Application Scenario 7

Application Initialization 7

Invocation of the Synchronous Function 9

Asynchronous Invocation of the Synchronous Function 9

Application Standard Runtime Event Loop 10

Conclusion 11

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

Application Note

Figures

Figure 1. Synchronous and Asynchronous Modes of Operation 2

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

Application Note

Executive Summary
This application note presents a solution to
invoke Intel® Dialogic® synchronous functions
asynchronously on Windows* operating
systems. After a discussion on threads and
thread pools, a proposed solution is
implemented on a conferencing application.

Introduction
The solution presented in this document may
be generically applied for any time-consuming
function that blocks the invoking thread until its
completion. It utilizes the Standard Run-time
Library (SRL) from Intel in a multithreaded
application environment for events
management. Please note that any event
management mechanism could be used
instead of the SRL, but SRL provides a
standard way of handing events in
Intel® systems.

For more information on SRL, please refer to
Voice Software Reference: Standard
Runtime Library for Windows at
http://resource.intel.com/telecom/support/
releases/winnt/SR511/docs/htmlfiles/srlgd3/
1458-02.htm.

Please note that readers of this application
note are advised to test for multithread safety
of the synchronous functions before attempting
the solution presented here. The solution
presented in this application note will only work
for thread-safe synchronous functions.

The Issue
Most of the functions in Intel Dialogic functions
allow the caller to select a function invocation
mode, namely EV_SYNC and EV_ASYNC for
synchronously or asynchronously invoking
these functions, respectively. But some
functions only provide a synchronous interface.
Synchronous functions block the invoking
thread or the entire application in single-
threaded applications for the duration that the
function executes (i.e., until it returns). Such a
limitation is of particular concern to application
developers, especially in high-density systems
when some of these synchronous functions are
time consuming. Such time-consuming
functions limit the application from continuing
to process its logic while waiting for the
synchronous function to return.

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

1

Application Note

http://resource.intel.com/telecom/support/

The Solution
Synchronous functions could be made
asynchronous using multithreading. By
spawning a new thread or using an already
created thread for this purpose and
transferring the responsibility of invoking the
time-consuming synchronous functions to this
“worker thread”, the application or the calling
thread could continue processing the logic
while the worker thread waits for the
synchronous function to complete its
execution and return. When the synchronous
function returns, the worker thread then posts
an SRL event (explained later) to the
application thread with appropriate return code
as was returned by the synchronous function.

One may want to pre-create a pool of worker
threads deemed to do the waiting job on
behalf of the main application. That way the
overhead associated in creation (and later
destruction) of the “dynamic threads” could be
circumvented. In such a scenario, one of the
threads in the pool might do the business of
scheduling jobs to an available thread in the
pool.

The following figures explain the functioning
and the benefits of this solution.

Thread Pools
This section presents a discussion on the
usage of threads for the purpose of
implementing the solution proposed in this
application note.

Application Note

2

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

Figure 1. Synchronous and Asynchronous Modes of Operation

Time

Application
thread

Th
re

ad

ex
ec

ut
io

n

Application
blocked;
Synchronous
function executes

Worker thread
blocked;
Synchronous
function executes

Overhead to
queue job to
thread pool

Worker
threads

Application
thread

Synchronous
Mode

Asynchronous
Mode

 Job
completion
events

 {{
{

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

3

Application Note

Why Use Thread Pools
As explained before, by using an additional thread, one may relieve the main application thread of
the task of waiting for the synchronous function. In other words, by using an additional thread, the
application could continue processing its logic, without getting blocked, while the synchronous
function is executed.

But if this additional thread were to be created at the time of the invocation of the synchronous
function, the application spends the amount of time as is needed by the operating system to create
this thread. A better solution would be to pre-create a set of worker threads at the application
initialization time which would invoke any such synchronous functions as needed by the
application. This pool of worker threads needs to be managed and “someone” should assign jobs
to them with suitable load balancing. It is recommended to have a separate thread do the job
assignment to these worker threads. So for a pool of “n” worker threads, one may assign the first
thread to be the master thread or the control thread while the rest of the “n-1” threads, called the
worker threads, do the job of invoking the synchronous function.

Windows* Thread Pool Services
Windows* provides a thread pooling mechanism natively and manages it in the operating system
itself. It creates and deletes threads dynamically as needed by the application. The number of
threads created is limited only by the available system memory.

The Windows function QueueUserWorkItem is used by the application to seek the services of
the thread pooling library. Windows creates the thread pool the first time the application invokes
this function. At least one thread in the pool is reserved to monitor the remaining threads in the
pool and to assign them “work items” as requested by the application.

For further information, please refer to http://msdn.microsoft.com/library and search for
QueueUserWorkItem.

Windows Thread Pool Services Peculiarities
Please note that the declaration of the function QueueUserWorkItem is not provided in the
version of “winbase.h” supplied with Microsoft Visual Studio* 6.0. The developer should either
manually declare the function as shown here, or include the Windows SDK version of
“winbase.h” before including the Visual Studio headers.

extern “C” WINBASEAPI BOOL WINAPI QueueUserWorkItem(
LPTHREAD_START_ROUTINE Function,
PVOID Context,
ULONG Flags

);

Handling Synchronous Functions
Any synchronous function is invoked asynchronously by developing a look-alike function that
shares the same signature as shown here.

Synchronous function:

long foo(Type1 arg1, Type2 arg2 …, Typen argn)

Asynchronous version of the synchronous function:

long ASYNC_foo(Type1 arg1, Type2 arg2 …, Typen argn);

http://msdn.microsoft.com/library

Application Note

4

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

An associated structure is defined as shown here that wraps up the arguments of the function to
pass to the thread pool. Please note that if any of the formal arguments is an address to a
memory location (i.e., a pointer type variable), care should be taken that the memory pointed to
by the pointer has a life at least until the time that the synchronous function is actually executed in
the worker thread.

typedef struct tagFOO {
Type1 arg1;
Type2 arg2;
.

.

.
Typen argn;

} DFOO, *PFOO;

Now the application invokes the Intel function as shown here.

// asynchronous invocation
if (invokeAsynchronously)
{

rc = ASYNC_foo(arg1, arg2, … , argn);
}
// synchronous invocation
else
{

rc = foo(arg1, arg2, … , argn);
}

The ASYNC_foo is implemented as follows.

long WINAPI ASYNC_foo(Type1 arg1, Type2 arg2,
…, Typen argn)

{
DFOO vContext = {

arg1,
arg2,
.
.
.
argn

};
PFOO pvContext = new DFOO (vContext);
QueueUserWorkItem(THREAD_ASYNC_foo, pvContext,

WT_EXECUTEINLONGTHREAD);
return 0;

}

Note that the THREAD_ASYNC_foo is the callback function that will be invoked in the context of
the worker thread selected by the Windows thread pool service.

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

5

Application Note

The callback function is further implemented as shown here.

#define ASYNC_EVENT_FOO 0x10000

void THREAD_ASYNC_foo(void* pvContext)

{

long rc = 0;

PFOO pContext = (PFOO)pvContext;

rc = foo(pContext->arg1, pContext->arg2,

…, pContext->argn);

// the synchronous function has returned;

// post an event to the appln

sr_putevt(devh, ASYNC_EVENT_FOO,

sizeof(rc), &rc, 0);

delete pContext;

}

The ASYNC_EVENT_FOO is the SRL user event that is posted to the application upon completion
of the synchronous function, foo. Note that foo is actually indeed invoked synchronously, but now
only the selected thread in the thread pool is the one waiting for its completion while the application
is free to continue processing its logic instead of waiting for it to return.

Please note that the formal arguments are packed in a structure whose memory is shown to be
allocated and freed dynamically in the code snippet shown in the next section. In the case of high-
density systems, one may use buffer pools to have pre-allocated memory to avoid the overheads
of such dynamic memory allocation and freeing.

Notification to Application
The completion of the synchronous function invocation is notified to the application by the worker
thread using an event posting mechanism provided by SRL. Please note that other means of event
management may also be used to achieve the objective.

The major function of the SRL is to provide a common interface for event handling and other
functionality common to all Intel devices. The SRL serves as the centralized dispatcher for events
that occur on all Intel devices. Through the SRL, events are handled in a standard manner.

Upon completion of the synchronous function, the THREAD_ASYNC_foo callback function posts a
predefined event to the application using the SRL function sr_putevt. The event is posted by
the callback function as shown here.

// return code

long rc;

rc = foo(…);

sr_putevt(devh, ASYNC_EVENT_FOO,

sizeof(rc), &rc, 0);

Application Note

6

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

The application in turn waits for an SRL event using one of the SRL wait functions, for example,
sr_waitevt as shown below. The function sr_waitevt waits for any event until a specified
timeout period.

// loop infinitely
while (1)
{

int ret;
ret = sr_waitevt(-1 /* wait forever */);
if (ret != -1)
{

ProcessEvents();
}

}

The function ProcessEvents is the applications event handler. All events received in the
application’s SRL event loop is processed in this function. This function merely analyses the
received event and performs the event-specific processing.

void ProcessEvents()
{

long ev;
long dev;
void* vp;

ev = sr_getevttype(0);
dev = sr_getevtdev(0);

vp = sr_getevtdatap(0);

switch (ev)
{
case ASYNC_EVENT_FOO:

{
long rc;

if (rc != 0)
{

printf(“Error in Device = %d\n”, dev);
return;

}

rc = (long*)vp;
.
.
.

}
break;

default:
{

.

.

.

}

break;

}
}

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

7

Application Note

Platform Independence
The solution proposed in this application note is presented in a Windows-specific implementation.
One may develop a platform-independent thread pool library which the application may use regard-
less of the underlying operating system. In case of Windows, such a library may utilize Window’s
native thread pooling services while in the case of other operating systems, it may provide a cus-
tom implementation of the thread pooling mechanism.

Application Example
The solution proposed in this application note is exemplified using a conferencing application. The
application takes two arguments.

mode: 0 = Synchronous; 1 = Asynchronous
of parties in conference

Application Scenario
The application creates one conference with the user-supplied number of parties in it. The first
party plays a file and the rest of the parties record the file. The asynchronous invocation is
demonstrated when the application is run in the asynchronous mode. The functions
dcb_estconf and dcb_addtoconf exemplify the solution. These two functions are part of the
R4 API from Intel and only provide a synchronous mode of invocation. But the application illustrates
how a developer may invoke these functions in the asynchronous mode.

Application Initialization

int main(int argc, char* argv[])
{

int iIndex = 0;
short iIterator = 0; // to access global arrays

// collect command line parameters
.
.
.

if (async)
{

// initiale thread pool library
.
.
.

}
else
{

.

.

.
}

// Perform Application specific initializations
.
.
.

// Open all voice resources
.
.
.

// Open a conference resource
.
.
.

// Put up to 4 parties in conference
iIterator = 0;
if(-1 == EstablishConf(iIterator,

((nConfItems <= 4) ? nConfItems : 4)))
{

printf(“dcb_estconf for Host failed\n”);
}

// Start Infinite App Main Loop
if (async)
{

while (1)
{

int ret;
/* wait forever */
ret = sr_waitevt(-1);
if (ret != -1)
{

ProcessEvents();
}

}
}
// Note: In async mode, we’ll never reach here
// Following code only executes in sync mode

// Put everyone else in the Conference
if (nConfItems > 4)
{

AddToConf(4, nConfItems-4));
}

StartConferencing();

.

.

.
}

Application Note

8

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

9

Application Note

Invocation of the Synchronous Function
The asynchronous versions of each synchronous function foo would be ASYNC_foo. Both the
functions would share the same function signature.

if (async)
{

rc = ASYNC_dcb_estconf(g_arpConfDevice,
&g_arpCDT[a_sCounter],
a_sItemsInConference, MSCA_ND,
&g_arpConfID);

}
else
{

rc = dcb_estconf(g_arpConfDevice,
&g_arpCDT[a_sCounter],
a_sItemsInConference, MSCA_ND,
&g_arpConfID);

}

Note, in case of asynchronous invocation, the return code will only indicate that the delegation of
this work item has been successfully posted to a worker thread. The actual return error code will
be available when the synchronous function completes execution in the context of the worker
thread, which will be posted to the applications event loop by the worker thread.

Asynchronous Invocation of the Synchronous Function
In order to delegate the responsibility of actually invoking the synchronous function by a worker
thread, the asynchronous version of the function must pack the function arguments into a
structure, allocate memory for this structure, and then post a “user work item” to the Windows’
thread pool library using the Windows API, QueueUserWorkItem.

typedef struct tagDCB_ESTCONF {
int devh;
MS_CDT* cdt;
int numpty;
int confattr;
int* confid;

} DCB_ESTCONF, *PDCB_ESTCONF;

long WINAPI ASYNC_dcb_estconf(int devh, MS_CDT* cdt, int numpty,
int confattr, int* confid)

{
DCB_ESTCONF vContext =
{

devh,
cdt,
numpty,
confattr,
confid

};
PDCB_ESTCONF pvContext = new DCB_ESTCONF(vContext);

QueueUserWorkItem(THREAD_ASYNC_dcb_estconf, pvContext,

Application Note

10

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

WT_EXECUTEINLONGTHREAD);
return 0;

}

void THREAD_ASYNC_dcb_estconf(void* pvContext)
{

long rc = 0;
PDCB_ESTCONF pContext = (PDCB_ESTCONF)pvContext;

rc = dcb_estconf(pContext->devh, pContext->cdt,
pContext->numpty, pContext->confattr,
pContext->confid);

sr_putevt(pContext->devh, DCB_EVENT_ESTCONF,
sizeof(rc), &rc, 0);

delete pContext;
}

Application Standard Runtime Event Loop
The following code segment provides a sample event handler implementation for the conferencing
application discussed in this application note.

void ProcessEvents()
{

long ev;
void* vp;

ev = sr_getevttype(0);
vp = sr_getevtdatap(0);

switch (ev)
{
case DCB_EVENT_ESTCONF:

{
long rc;
rc = (long*)vp;

if (rc != 0)
{

printf(“Error\n”);
return;

}

// Put everyone else in the Conference
if (nConfItems > 4)
{

AddToConf(4, nConfItems-4);
}
else
{

StartConferencing();
}

A Solution to Invoke Synchronous Intel® Dialogic® Functions
Asynchronously for the Windows* Operating System

11

Application Note

}
break;

case DCB_EVENT_ADDTOCONF:
{

long rc;
rc = (long*)vp;

if (rc != 0)
{

printf(“Error\n”);
return;

}

static int partiesInConf = 4;
if (++partiesInConf == nConfItems)
{

StartConferencing();
}

}
break;

.

.

.
default:

{
}
break;

}
}

Conclusion
In a simple test run of the conferencing sample application with 32 parties in a conference, the syn-
chronous mode of invocation was found to block the application for 3545 ms, whereas the asyn-
chronous wrapper only blocked the application for 421 ms. In other words, the solution presented
in this application note helped the application process the synchronous function in about 12% of
the time it took to invoke in the synchronous mode. In most applications this a significant amount
of time in which other application logic could be performed. The test system specifications were as
follows:
■ System release: Intel Dialogic SR 5.1.1 FP1 for Windows

■ Operating system: Windows 2000 SP 3

■ Processor speed: 500 MHz

■ RAM size: 128 MB

■ Intel Dialogic boards: DM/V1200A-4E1, DM/V1200-4E1

To learn more, visit our site on the World Wide Web at http://www.intel.com.

1515 Route Ten
Parsippany, NJ 07054
Phone: 1-973-993-3000

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel, Intel Dialogic, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

*Other names and brands may be claimed as the property of others.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate
performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration
may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on the performance of Intel products,
reference http://www.intel.com/procs/perf/limits.htm or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

Printed in the USA Copyright © 2003 Intel Corporation All rights reserved. e Printed on recycled paper. 06/03 00-8710-001

http://www.intel.com
http://www.intel.com/procs/perf/limits.htm

